
CS145 - Spring ‘22

Embedded Software
CS 145/145L

Caio Batista de Melo

CS145 - Spring ‘22

Announcements (2022-04-28)

● Project 2 is due tomorrow!

● Mid-quarter course evaluation is due on Saturday for extra credit on Project 3
○ Completely anonymous, please provide your honest feedback :)

○ Will replace the early submission extra credit for P3

○ https://evaluations.eee.uci.edu/takeLanding/WTWYYF

2

https://evaluations.eee.uci.edu/takeLanding/WTWYYF

CS145 - Spring ‘22

Project 3

Design an embedded computer centered around the ATMega32 microcontroller.
For input: use a keypad;
For output: use an LCD and a speaker.

Write a C program that implements a music player. Your music player should be able
to play musical notes stored in its memory.

https://canvas.eee.uci.edu/courses/45047/assignments/929272

Project 3 is short! It’s due next week (2022-05-06)!!

3

https://canvas.eee.uci.edu/courses/45047/assignments/929272

CS145 - Spring ‘22

Basic requirements (100%)

○ Plays a sound which is neither croaky nor severely distorted. (We understand this is digital music).
Player should support start/stop through button press. (65% for functionality + 30% for quality).

○ LCD displays the name of the song currently playing (5%)

Extra credits (20%)

○ Implements pitch control (at least 3 levels) (5%)
○ Implements tempo control (at least 3 levels) (5%)
○ Plays multiple songs, and supports user selection between each song (5%)
○ Complete the Mid-quarter evaluation (5%)

https://canvas.eee.uci.edu/courses/45047/assignments/929272

Project 3 - Grading

4

https://canvas.eee.uci.edu/courses/45047/assignments/929272

CS145 - Spring ‘22

Intro

• The speaker’s whole
diaphragm changes according
to the voltage applied.

• Thus vibration of pressure
(technically) or sound is
generated by alternating this
voltage.

• But our AVR cannot provide a
purely analog signal as shown

• We have voltages in the
digital nature in the form of 0s
and 1s

Period(P)

Frequency(F) = 1/P

+V

-V

1 0 1 1 10 0

20Hz to 20 KHz

Sound is an alternating signal!
Its frequency determines the pitch!

We want to generate a simple sine wave

5

CS145 - Spring ‘22

Sound

The momentum of diaphragm’s motion will help it oscillate.

Use of Digital Signal

6

CS145 - Spring ‘22

GPIO

PB3

AVR

Initial Layout

7

CS145 - Spring ‘22

• The speaker has an
impedance of its own

• The capacitor charges
during the positive cycle
and the charging speed is
decided by the R and C
combination

• In the negative cycle or 0
cycle in digital terms, the
capacitor discharges again
as per the R and C
network

• Thus smoothening of the
square wave takes place

0.1uF
8 Ohm

Some improvements in the Layout

8

CS145 - Spring ‘22

ISP

LCD

KeyPad

For extra credit you probably need a keypad.
Standard project could use a single button.

Final Layout

9

CS145 - Spring ‘22

• Notes can be defined as a combination of

frequency and duration

• Musicians abstract this out using symbols.

• E.g.,: A, ½ Time

• It is believed that most of the musics on

the planet can be played using 12

frequencies and their variations.

MUSIC

Song for Project

Sequence of Notes Frequency (Hz), for example 440HZ

Duration(Seconds), for example 2 seconds

Song for Project 3

10

CS145 - Spring ‘22

(440 Hz, 1 sec)
(466 Hz, 2 sec)

(490 Hz, 0.5 sec)

Decoding Notes

11

CS145 - Spring ‘22

https://en.wikipedia.org/wiki/Musical_note
https://www.szynalski.com/tone-generator/

Musical Notes Resources

https://www.musictheory.net/lessons/11

12

https://en.wikipedia.org/wiki/Musical_note
https://www.szynalski.com/tone-generator/
https://www.musictheory.net/lessons/11

CS145 - Spring ‘22

Example Music

https://onlinesequencer.net/433516

HINT: You can try searching for the song you want + “midi” to try to find a note sequence.
Example: to find the above one, I searched for “shooting stars midi”
https://www.google.com/search?q=shooting+stars+midi

13

https://onlinesequencer.net/433516
https://www.google.com/search?q=shooting+stars+midi

CS145 - Spring ‘22

Code Layout

typedef enum {

 A, As, B, C, Cs, D, Ds, E, F, Fs, G, Gs

} Note;

14

CS145 - Spring ‘22

Code Layout

typedef enum {

W, H, Q, E

} Duration;

15

CS145 - Spring ‘22

Code Layout

typedef enum {

 A, As, B, C, Cs, D, Ds, E, F, Fs, G, Gs

} Note;

typedef enum {

W, H, Q, E

} Duration;
Anything wrong?

Two enums with the same value!

typedef struct {

 Note note;

 Duration duration;

} PlayingNote;

16

CS145 - Spring ‘22

Code Layout

typedef enum {

 A, As, B, C, Cs, D, Ds, Ee, F, Fs, G, Gs

} Note;

typedef enum {

W, H, Q, Ei

} Duration;

typedef struct {

 Note note;

 Duration duration;

} PlayingNote;

17

CS145 - Spring ‘22

Example

PlayingNote shooting_stars[] = {

 {Ds, W},

 /* Wait for half */

 {Ds, H},

 {Ee, H},

 /* Wait for half */

 {B, Q},

 /* Wait for quarter */

 {Gs, Q}

 /* Keep going... */

};
How can you wait?

18

CS145 - Spring ‘22

Main Function

int main () {

 while (1) {

 play_song(shooting_stars, N);

 }

 return 0;

}

The sequence we
defined previously.

Number of notes in our song.

Play it forever!

19

How do we add a button input?
What changes are needed for multiple songs?

CS145 - Spring ‘22

play_song function

void play_song(const PlayingNote song[], int length) {

 int i;

 for (i = 0; i < length; i++) {

 play_note(&song[i]);

 }

}

Can we do a loop like the one for strings?
while (note = *song++)

Why not?

20

CS145 - Spring ‘22

play_note function

void play_note(const PlayingNote* note) {

 int i, k;

 for (i = 0; i < k; i++) {

 SET_BIT(PORTB, 3);

 wait(TH);

 CLR_BIT(PORTB, 3);

 wait(TL);

 }

}

TH

TL
k times

Create k ups and downs

F = 1 / P (you know F)
P = TH + TL
TH = TL
k = Duration / P

21

CS145 - Spring ‘22

Notes Frequencies

22

https://en.wikipedia.org/wiki/Musical_note

https://en.wikipedia.org/wiki/Musical_note

CS145 - Spring ‘22

Notes Frequencies

23

Note Offset Frequency (Hz) Period (s) TH / TL (s) Wait (1ms resolution)
A 0 440.00 0.002272727273 0.001136363636 1
A# 1 466.16 0.002145168892 0.001072584446 1
B 2 493.88 0.002024769814 0.001012384907 1
C 3 523.25 0.001911128216 0.000955564108 0
C# 4 554.37 0.001803864832 0.000901932415 0
D 5 587.33 0.001702621678 0.000851310839 0
D# 6 622.25 0.001607060866 0.000803530433 0
E 7 659.26 0.001516863471 0.000758431735 0
F 8 698.46 0.001431728466 0.000715864232 0
F# 9 739.99 0.001351371722 0.000675685860 0
G 10 783.99 0.001275525055 0.000637762527 0
G# 11 830.61 0.001203935334 0.000601967667 0

Cannot tell
them apart!

Maybe we can
have a finer timer?

CS145 - Spring ‘22

Notes Frequencies - Finer Timer Resolution

24

Note Offset Frequency (Hz) Period (s) TH / TL (s) Wait (0.1ms resolution)
A 0 440.00 0.002272727273 0.001136363636 11
A# 1 466.16 0.002145168892 0.001072584446 11
B 2 493.88 0.002024769814 0.001012384907 10
C 3 523.25 0.001911128216 0.000955564108 10
C# 4 554.37 0.001803864832 0.000901932415 9
D 5 587.33 0.001702621678 0.000851310839 9
D# 6 622.25 0.001607060866 0.000803530433 8
E 7 659.26 0.001516863471 0.000758431735 8
F 8 698.46 0.001431728466 0.000715864232 7
F# 9 739.99 0.001351371722 0.000675685860 7
G 10 783.99 0.001275525055 0.000637762527 6
G# 11 830.61 0.001203935334 0.000601967667 6

Still can’t tell
some apart!

Maybe we
can change
frequencies?

CS145 - Spring ‘22

Notes Frequencies - Down an Octave

25

Note Offset Frequency (Hz) Period (s) TH / TL (s) Wait (0.1ms resolution)
A 0 220.00 0.004545454545 0.002272727273 23
A# 1 233.08 0.004290337785 0.002145168892 21
B 2 246.94 0.004049539628 0.002024769814 20
C 3 261.63 0.003822256433 0.001911128216 19
C# 4 277.18 0.003607729664 0.001803864832 18
D 5 293.66 0.003405243357 0.001702621678 17
D# 6 311.13 0.003214121733 0.001607060866 16
E 7 329.63 0.003033726941 0.001516863471 15
F 8 349.23 0.002863456932 0.001431728466 14
F# 9 369.99 0.002702743443 0.001351371722 14
G 10 392.00 0.00255105011 0.001275525055 13
G# 11 415.30 0.002407870669 0.001203935334 12

Can tell all most
of them apart!

How do you get
these values in
your code?

For our use-case
it’s probably ok :)

But you could use
a finer resolution!

CS145 - Spring ‘22

Frequency Mapping

26

Note Offset Frequency (Hz)
A 0 220.00
A# 1 233.08
B 2 246.94
C 3 261.63
C# 4 277.18
D 5 293.66
D# 6 311.13
E 7 329.63
F 8 349.23
F# 9 369.99
G 10 392.00
G# 11 415.30

1. Store only the original frequency (220Hz) and use the
formula (2^(n/12) * 220);

or

2. Store these values as constants and use them as needed
a. Could also store period, TH, number of waits, etc.

Which approach is better?
It depends on your application!

CS145 - Spring ‘22

AVR Resolution

void

avr_wait(unsigned short msec)

{

TCCR0 = 3;

while (msec--) {

TCNT0 = (unsigned char)(256 - (XTAL_FRQ / 64) * 0.001);

SET_BIT(TIFR, TOV0);

while (!GET_BIT(TIFR, TOV0));

}

TCCR0 = 0;

}

Check our slides about timers!
Make a new function or fix existing code that uses the 1ms resolution (e.g., lcd_init)

27

See you next time :)

Q & A

28

